

Multi-PF Net Device

Tariq Toukan

Netdev 0x18 Conference Santa Clara, California July 2024

Background

Idea was originally presented by Achiad Shochat in Netdev conference 2.2.

Matured, prioritized, implemented, and accepted upstream (v6.9).

Agenc

- Describe problems
- Adapter-level
- Software mode
- Design decisior
- Implementatio
- Performance n
- Future work

solution	
el	
ns	
on details	
numbers	

Problem description

Problem #1: BW mismatch PCI vs NIC

- NIC connected to host
- Many possible combinations for
 - NIC speed x PCI speed

Problem #1: BW mismatch

5

PCI speeds

	RAW bitrate (GT/s)	Link BW (Gbps)	x16 BW (Gbps)
PCle 1.0	2.5	2	32
PCIe 2.0	5	4	64
PCIe 3.0	8	8	128
PCle 4.0	16	16	256
PCle 5.0	32	32	512
PCle 6.0	64	64	1024

Problem description Problem #1: BW mismatch PCI vs NIC

VS.

- 200 Gbps (ConnectX-6)
- **400 Gbps** (ConnectX-7)
- 800 Gbps (ConnectX-8)

• ...

NIC speeds

Problem #1: BW mismatch

Example 2:

PCle Gen3 x16

512 Gbps

800 Gbps

Problem description Problem #2: CPU scaling on NUMA systems

Inter-processor

- Intel:
 - QuickPath Interconnect (QPI)
 - Ultra Path Interconnect (UPI)
- ARM:

• ...

Problem description Problem #2: CPU scaling on NUMA systems

Network

Solution NIC port with multiple PCI buses

- Adapter-level solution

Socket Direct Card Configuration

Solution Adapter with multiple PCIe per port

Solution

Adapter with multiple PCIe per port Problem #1: BW mismatch, SOLVED

PCle Gen3 x16

SOLVED

128 Gbps

Solution

Adapter with multiple PCIe per port Problem #2: CPU scaling on NUMA systems, SOLVED

- OS is not aware of the network port sharing
- Multiple PCIe buses
 - Each creates its own netdev
- Multiple net devices
 - Multiple MAC addresses
 - Multiple IP addresses

• ...

- Confused applications
 - Specify netdev or IP address to benefit from NUMA locality
- Totally different management

Impact on Software

Software Model Multi-PF net device

Idea:

- Combine the multiple net devices into one
- Abstract the aggregation logic in the vendor driver level (mlx5e)
- Expose the multi-PCI NIC port to the network stack through a single netdev

Software Model Multi-PF net device

SW Model

Physical Elements

- Aligned with the netdev per port kernel convention
- Good layers partitioning
- PCI subsystem is unaware (untouched) PCI device per PCI bus • Net subsystem is unaware (untouched) – network device per network port • The whole aggregation logic is encapsulated in the network device driver (mlx5e) • Good reflection of reality: Symmetric modeling of the physical elements
- Good Out-Of-Box experience
 - Driver takes care
 - No necessary admin configurations

Software Model Multi-PF net device

Netdev software stats are consistent with the hardware port stats

SW Model

Physical **Elements**

- Designed and implemented to support more than two PFs per port However, we do not allow untested setting
- Tested and verified on 2 PFs
 - #define MLX5_SD_MAX_GROUP_SZ 2
- When future hardware with more than 2 PFs per port becomes available
 - Verify functionality
 - Verify performance
 - Increase the software constant

Software Model Multi-PF net device

One net device managing multiple PFs

- Device resources management
- Categorize into affined / non-affined resources
- - Called "primary PF"
 - All others are called "secondary PFs"
- Each PF is already associated with a NUMA node
- Properly set IRQ affinity and XPS
- Setting is applied by the driver in default

Design Decisions

Non-affined resources (RSS indirection table, flow steering) go through one designated bus

 Affined resources (TX/RX queues) go through their designated bus • Distribute datapath channels (TX/RX queues) equally between the PFs

Channels distribution policy:

- Distribute the channels to PFs in round-robin
- Rather than distribute in ranges
- Example, for 2 PFs and 5 channels:

Advantages:

- Persistent statistics : per-ring history is still meaningful

Design Decisions Channels Distribution Policy

No channels re-partition/re-shuffle when the number of channels changes

hannel	PF
index	index
0	0
1	7
2	0
3	
4	0

Observability

```
$ ./tools/net/ynl/cli.py --spec Documentation/netlink/specs/netdev.yaml \
    --dump queue-get --json='{"ifindex": 13}'
[{'id': 0, 'ifindex': 13, 'napi-id': 539, 'type': 'rx'},
 {'id': 1, 'ifindex': 13, 'napi-id': 540, 'type': 'rx'},
 {'id': 2, 'ifindex': 13, 'napi-id': 541, 'type': 'rx'},
 {'id': 3, 'ifindex': 13, 'napi-id': 542, 'type': 'rx'},
 {'id': 4, 'ifindex': 13, 'napi-id': 543, 'type': 'rx'},
 {'id': 0, 'ifindex': 13, 'napi-id': 539, 'type': 'tx'},
 {'id': 1, 'ifindex': 13, 'napi-id': 540, 'type': 'tx'},
 {'id': 2, 'ifindex': 13, 'napi-id': 541, 'type': 'tx'},
 {'id': 3, 'ifindex': 13, 'napi-id': 542, 'type': 'tx'},
 {'id': 4, 'ifindex': 13, 'napi-id': 543, 'type': 'tx'}]
$ ./tools/net/ynl/cli.py --spec Documentation/netlink/specs/netdev.yaml \
    --dump napi-get --json='{"ifindex": 13}'
[{'id': 543, 'ifindex': 13, 'irg': 42},
 {'id': 542, 'ifindex': 13, 'irq': 41},
 {'id': 541, 'ifindex': 13, 'irg': 40},
 {'id': 540, 'ifindex': 13, 'irq': 39},
 {'id': 539, 'ifindex': 13, 'irg': 36}]
```

Design Decisions Channels Distribution Policy

• The relation between PF, irq, napi, and queue can be observed via netlink spec.

Channel	PF
index	index
0	0
]	1
2	0
3	7
4	0

• Here you can clearly observe our channels distribution policy: PF0 is at 0000:08:00.0 PF1 is at 0000:09:00.0

```
$ ./tools/net/ynl/cli.py --spec Documentation/netlink/specs/netdev.yaml \
    --dump napi-get --json='{"ifindex": 13}'
[{'id': 543, 'ifindex': 13, 'irq': 42},
 {'id': 542, 'ifindex': 13, 'irq': 41},
 {'id': 541, 'ifindex': 13, 'irq': 40},
 {'id': 540, 'ifindex': 13, 'irq': 39},
 {'id': 539, 'ifindex': 13, 'irq': 36}]
$ ls /proc/irg/{36,39,40,41,42}/mlx5* -d -1
/proc/irq/36/mlx5 comp0@pci:0000:08:00.0
/proc/irg/39/mlx5 comp0@pci:0000:09:00.0
/proc/irq/40/mlx5 comp1@pci:0000:08:00.0
/proc/irq/41/mlx5 comp1@pci:0000:09:00.0
/proc/irq/42/mlx5 comp2@pci:0000:08:00.0
```

Design Decisions Channels Distribution Policy

Channel	PF
index	index
0	0
1	7
2	0
3	1
4	0

Some implementation details:

- Init/destroy flow (probe):
 - Create netdev once all PFs are probed
- Software-level communication between PFs
 - Collaborate to make it work
- Devcom: mlx5 device driver communication infrastructure
- Use it for a "leader election" algorithm, to chose "primary PF"

Implementation details

• Symmetrically, destroy netdev whenever any of the PFs is removed

- Desired attributes of leader (Primary PF) election algorithm:
 - Simple
 - Deterministic
 - Predictable
 - Persistent between reboots
- Keep same net device name
- Keep same channels indexing/distribution to PFs
- Keep same PF for RSS and RX steering
- Keep admin configuration scripts simple
- Good user experience
- Algorithm: PF with smallest ID is elected a leader

Implementation details **Primary PF Election**

RX steering

- RX steering objects are not multiplied
- One instance, belongs to the primary PF
- One RSS table, the primary PF domain
- RSS table and steering rules can redirect incoming traffic to RX queues of other PFs At this stage, no need for PF-2-PF software communication
- netdev (and its private areas) are available by this point
- Requires hardware support

Implementation details **RX Steering**

IRQ and XPS

- Match the cpus according to the channel distribution
- Use existing cpu core distance proximity scheme
- Alternate PFs as input
- Example:

NUMA	node(s	5):	2
NUMA	node0	CPU(s):	0-11
NUMA	node1	CPU(s):	12-23

PFO on NUMA #0 PF1 on NUMA #1

Implementation details IRQ and XPS

Channel index	PF index	IRQ affinity
0	0	0
1	1	12
2	0	1
3	1	13
4	0	2
5	1	14
6	0	3
7	1	15
8	0	4
	•••	
20	0	10
21	1	22
22	0	11
23	1	23

/sys/class/net/eth2/queues/tx-0/xps_cpus:000001 /sys/class/net/eth2/queues/tx-1/xps_cpus:001000 /sys/class/net/eth2/queues/tx-2/xps_cpus:000002 /sys/class/net/eth2/queues/tx-3/xps_cpus:002000 /sys/class/net/eth2/queues/tx-4/xps_cpus:000004 /sys/class/net/eth2/queues/tx-5/xps_cpus:004000 /sys/class/net/eth2/queues/tx-6/xps_cpus:000008 /sys/class/net/eth2/queues/tx-7/xps cpus:008000 /sys/class/net/eth2/queues/tx-8/xps_cpus:000010

/sys/class/net/eth2/queues/tx-20/xps_cpus:000400 /sys/class/net/eth2/queues/tx-21/xps_cpus:400000 /sys/class/net/eth2/queues/tx-22/xps_cpus:000800 /sys/class/net/eth2/queues/tx-23/xps_cpus:800000

TX is perfectly affined by XPS

RX does hash-based RSS in default

- Cannot predict the correct PF / channel
- aRFS?
- Static RX steering rules?

Implementation details RX / TX affinities

Performance

DUT setup:

- Processor: Intel(R) Xeon(R) Platinum 8470 CPU @2.00GHz
- Before: Single PF, 200Gbps, on NUMA #0
- Socket-Direct system, two PFs (NUMA #0 and NUMA #1), 200Gbps port, single netdev • After:

Setting:

- Multi-ring, multi-core, multi-stream, on 2 NUMAs.
- 1:1:1 mapping
 - Reduce number of variables
 - Performance stability
 - Apples-to-apples comparison

Performance Setting

Setting:

- Multi-ring, multi-core, multi-stream, on 2 NUMAs.
- 1:1:1 mapping

BW tests:

- DUT does RX
- 2. DUT does TX
- Monitored:
 - Inter-processor BW (UPI)
 - Memory
 - Power

Latency test

- Inter-processor throughput
 - pcm tool

RX test:

- Total UPI incoming data traffic: 15 GBytes Before: 1.4 Gbytes (~10 times less) After:
- Total UPI outgoing data and non-data traffic: Before: 49 GBytes 4.4GBytes (~11 times less) After:

TX test:

- Total UPI incoming data traffic: Before: <u>12 Gbytes</u> 0.15 G (~80 times less) After:
- Total UPI outgoing data and non-data traffic: Before: 33 G 1.6G (~20 times less) After:

Performance BW Tests: Inter-Processor Throughput

Memory observations:

- Remote dma writes do not go to DDIO
- Writes go to RAM, rather than LLC cache
- Expect high memory bandwidth on remote NUMA node
- Expect high latency in latency test

Performance BW Tests: Memory Throughput

• Make the processor cache the primary destination and source of I/O data

32

pcm-memory

RX test

Before:

After:

				S
	NODE	0	Mem	Re
	NODE	0	Mem	Wr
	NODE	0	Memo	ory
 				s
 				S
 	NODE	0	Mem	S
 	NODE	0	Mem Mem	S Rei Wr
 	NODE NODE NODE	0	Mem Mem	Rea
 	NODE NODE NODE	0 0 0	Mem Mem	Rei Wr
	NODE NODE NODE	0	Mem Mem	Rei
	NODE NODE NODE	0	Mem Mem	Rei Wr
	NODE NODE NODE	0	Mem Mem	Rei
	NODE NODE NODE	0	Mem Mem	Rea

Performance BW Tests: Memory Throughput

ocket 0 Sc ad (MB/s) : 1207.72 NODE 1 Mem Rea ite(MB/s) : 1021.13 NODE 1 Mem Wri ite(MB/s) : 2228.85 NODE 1 Memory (MB/s) : 2228.85 NODE 1 Memory System Read Throughput (MB/s) : 301 System Write Throughput (MB/s) : 1606 System Memory Throughput (MB/s) : 1907							
ad (MB/s) : 1207.72 NODE 1 Mem Rea ite(MB/s) : 1021.13 NODE 1 Mem Wri (MB/s): 2228.85 NODE 1 Memory 	ocket	0					Soc
System Write Throughput (MB/s): 1606 System Memory Throughput (MB/s): 1907	ad (MB/ ite(MB/ (MB/s)	(s) : (s) : :	1207.72 1021.13 2228.85		NODE NODE NODE	1 Mem 1 Mem 1 Mem	Read Writ ory (
System Read Throughput(MB/s): 301 System Write Throughput(MB/s): 1606 System Memory Throughput(MB/s): 1907							
System Write Throughput(MB/s): 1606 System Memory Throughput(MB/s): 1907	Syst	tem Rea	ad Throug	ghput (M	B/s):		3010
System Memory Throughput (MB/s): 1907	Syste	em Wri	te Throug	ghput (M	B/s):		16063
	System	n Memo	ry Throug	ghput (M	B/s):		19073

							_			
ocket	0								So	C
ad (ME ite(ME (MB/s	3/s) 3/s) 3):	: : 1	941.00 853.43 794.43	0 3 3		NODE NODE NODE	1 1 1	Mem Mem Memo	Rea Wri ory	
										_
Sys	stem	Read	l Throu	ıghpi	it (MI	B/s):			168	6
Syst	em V	∛rite	Throu	lghpu	it (MI	B/s):			158	1
Syste	em Me	emory	Throu	ıghpı	it (MI	B/s):			326	8

_____ cket 1 ----_____ l (MB/s) : 1803.17 --| te(MB/s) : 15041.88 --| (MB/s): 16845.04 --_____ _____ 0.89 3.01 ----3.89 ___ _____ _____ cket 1 -----_____ d (MB/s) : 745.44 --| te(MB/s) : 728.42 --| (MB/s): 1473.86 --| _____ _____ 5.44 ____ .84 ----.29 -----_____

pcm-memory TX test

• Before:

After:

I																		
i				So	ck	et	0						ij					Soc
	NODE	0	Mem	Rea	d	(MB/	s)	:		611	.38		· ·		NODE	1	Mem	Read
	NODE	0	Mem	Wri	te	(MB/	s)	:		419	.18		11.		NODE	1	Mem	Writ
	NODE	0	Memo	ory	(M	B/s)	:		1	030	.56		11.		NODE	1	Mem	ory
													11.					
													II.					
						Syst	em	Re	ad	l Th	rou	ghpı	ıt	(MI	3/s):			1275
					s	yste	m	Wri	te	Th	rou	ghpı	ıt	(MI	3/s):			850
					sy	stem	n M	emc	ory	Th Th	rou	ghpı	ıt	(MI	3/s):			1360
													۱ŀ					
													-					
				So	ck	et	0						-					Soc
													1-					
	NODE	0	Mem	Rea	ıd	(MB/	s)	:		936	.40		-		NODE	1	Mem	Read
	NODE	0	Mem	Wri	.te	(MB/	s)	:		651	.98		-		NODE	1	Mem	Writ
	NODE	0	Memo	ory	(M	B/s)	:		1	588	.37		-		NODE	1	Memo	ory (
													1-					
													-					
						Syst	em	Re	ad	Th	rou	ghpu	it	(ME	3/s):			1959
					S	yste	m	Wri	te	Th	rou	ghpu	ıt	(ME	3/s):			1299
					sy	stem	ı M	emc	ry	Th	rou	ghpu	ıt	(ME	3/s):			3258
													-					

Performance BW Tests: Memory Throughput

```
_____
cket 1
             ___
_____
d (MB/s) : 12144.53 --|
te(MB/s) : 431.58 --|
(MB/s): 12576.10 --|
_____
_____
5.90
             ___
0.76
             -----
6.66
             -----
_____
------
cket 1
             ____
_____
d (MB/s) : 1022.60 --|
te(MB/s) : 647.38 --|
(MB/s): 1669.98 --|
_____
_____
9.00
             ----
9.35
             ___
8.35
             -----
```


Power consumption

- Measured for the whole system through external device
- Covers
 - NIC
 - PCI
 - CPUs
 - Inter-processor
 - Memory
 - Etc...
- Measured additional power consumption:
 - additional consumption =
 - power(during test) power(idle)

Performance BW Tests: Power Consumption

Power consumption

- additional consumption = power(during test) – power(idle)
- RX test
 Before: 172 Watt
 After: 164 Watt (5% saving)
- TX test
 Before: 119 Watt
 After: 112 Watt (6% saving)
- Save power
- Save money
- Save earth ??
- This speaks to everyone...

Performance BW Tests: Power Consumption

- Latency test: netperf TCP_RR
- Single ring, single core (irq, napi, stack, app)

- Client side is fixed, server side is the DUT. One-sided changes in a two-sided latency test. Isolated improvement is even higher.
- Run on NUMA #0 core: Before: 52K transactions/sec 52K transactions/sec (expected) After:
- Run on NUMA #1 core: Before: <u>43K transactions/sec</u> 52K transactions/sec (~20% faster) After:
 - Number became similar to NUMA #0 core
 - "local" once again!

Performance Latency Test

Future Work

- Test and extend support beyond 2 PFs for future hardware
- Possible extensions to other function types (VFs, SFs)
- Possibly add dynamic PF addition/deletion to existing netdev
 - Adds complexity
 - Real use case?
- Improve sysfs observability and control
 - Today, sysfs links netdev only to its primary PF, and vice versa
- Hope that more vendors jump in
- Generalize the logic into common netdev APIs
 - Software communication of PFs through generic API (non-mlx5)
 - drivers/base/component.c ?
 - Leader election logic
 - XPS and IRQ logic

Future Work

39

References

NVIDIA Socket-Direct https://www.nvidia.com

Achiad's netdev 2.2 presentation https://netdevconf.info//2.2/session.html?shochat-devicemgmt-talk

Netdev 0x18 presentation https://netdevconf.info/0x18/sessions/talk/multi-pf-single-netdev.html

Kernel patches https://lore.kernel.org/a

Linux Kernel Documentation https://docs.kernel.org/networking/multi-pf-netdev.html

https://www.nvidia.com/en-us/networking/ethernet/socket-direct/

https://lore.kernel.org/all/20240215030814.451812-1-saeed@kernel.org/

Questions?

Thanks

